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Vortical flows with an axial (z-axis) swirl and a toroidal circulation (in the (ρ, z)-
plane) can be observed in a wide range of fluid mechanical phenomena such as
flow around rotary machines or natural vortices like tornadoes and hurricanes. In
this paper, we obtain exact analytical solutions for a general class of steady systems
with such three-dimensional circulating structures. Assuming incompressible ideal
fluid, a general single-variable equation, known as the Squire–Long equation, can
be constructed which can uniquely describe the velocity fields with steady axial and
toroidal circulations. In this paper, we consider the case where this type of flow can be
analysed by solving a linear homogeneous partial differential equation. The derived
equation resembles the governing equation of the hydrogen problem. As a result, we
obtain a quantization relation which is similar to the expression for the quantized
energy states in a hydrogen atom.

For circulating flows, this formalism provides a complete set of orthogonal basis
functions which are regular and localized. Hence, each of the basis solutions can
be used as a simplified model for a realistic phenomenon. Moreover, an arbitrary
circulating field can be expanded in terms of these orthogonal functions. Such
an expansion can be potentially useful in the study of more general vortices. As
illustrations, we present a few examples where we solve the linear homogeneous
equation to analyse fluid mechanical systems which can be models for circulating
flow in confined geometry. First, we consider three-dimensional vortices confined
between two parallel planar walls. Our examples include flows between two infinite
planar walls, inside and outside a vertical cylinder bounded at the ends by horizontal
plates, and in an axially confined annular region. Then we describe the special way
in which the basis functions should be superposed so that a complicated steady
velocity-field with three-dimensional vortical structures can be constructed. Two such
cases are discussed to indicate that the derived solutions can be used for complicated
fluid mechanical modelling.

1. Introduction
Vortical flow is a common feature in many fluid mechanical systems where the

circulating velocity field plays an important role. Such flow exists in nature in the
forms of hurricanes and tornadoes. Other examples are the velocity fields generated
around rotary machines such as propellers, fans or windmills. Hence, for both science
and technology, it is necessary to analyse the dynamics of such a vortical circulation,
which generally involves a complicated three-dimensional field.

The length scales and the time scales associated with the aforementioned systems
are very different in each case. However, there are a few underlying similarities and
common characteristics in these vortical flows. First of all, these phenomena can
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be considered quasi-steady in the time scale of the predominant vortices (Bragg &
Hawthorne 1950; Batchelor 1964; Sozou, Wilkinson & Shtern 1994). These are all
high-Reynolds-number flows so that the viscous effect can be neglected for the velocity
field away from a solid boundary (Moffat 1981; Buntine & Saffman 1995). Moreover,
all of these involve two major circulations: one is about an axis of swirl (which may
be denoted as the z-axis) and the second is a toroidal circulation in the (ρ, z)-plane
where ρ is the distance from the axis of swirl. The velocity fields in hurricanes
(Emanuel 1991) and tornadoes (Ward 1972; Burggraf & Foster 1977; Keller 1994) or
the flows produced by rotating machines (Escudier 1984, 1987; Lopez 1998) exhibit
such generic vortical structures.

Besides their presence in large-scale-flow phenomena, these structures also exist in
the form of localized eddies in turbulent phenomena. Because of the divergenceless
velocity and vorticity, the streamlines and vortex-lines of any localized vortex must
be closed loops. Hence, the eddies in turbulence often form local velocity fields
which resemble the flow patterns with both axial and toroidal circulations (Gollub &
Swinney 1975; Malik & Chang 1994). Thus, the understanding of a wide range of
fluid mechanical systems depends on a thorough knowledge of such fundamental
structures.

In this paper, we derive expressions for steady inviscid vortical flows by solving
a linear homogeneous partial differential equation. These analytical results have
qualitative agreement with the fluid mechanical measurements in high-Reynolds-
number systems where vorticity is generated in a confined domain. For example,
experiments involving propellers (Lepicovsky & Bell 1984; Fukada, Nigim & Koyama
1996) and vortex simulators (Church et al. 1979; Mitsua & Monji 1984) show
agreement with the theoretically calculated streamlines. Hence, the solutions presented
can be useful in the modelling of such vortical systems.

There are several known exact results where either the full Navier–Stokes equation
with the viscous term or the inviscid Euler equation is solved to analyse swirling
flows. Examples include the vortices described by Hill (1894) and by Lamb (1945).
More recently, exact solutions have been proposed for different types of circulations
(Wang 1991; Saffman 1992; Bazzant & Moffat 2005; Le Dizès & Lacaze 2005). There
are also related theoretical and numerical works involving axisymmetric swirling
jets (Long 1961; Fernandez-Feria, de la Mora & Barrero 1995), vortex breakdown
(Goldshtik & Shtern 1990; Shtern & Hussain 1999) and vortical instabilities (Gelfgat,
Bar Yoseph & Solan 1996; Delbende, Chomaz & Huerre 1998). These past studies,
however, substantially differ from our analysis.

In spite of these exact solutions, there are few analytical results where a swirling flow
with complicated three-dimensional structures was considered. The small number of
available solutions for such flows invariably involve a singularity in the flow domain.
This somewhat restricts the prospect of these results being used in modelling of
circulations in a confined domain. In contrast, the expressions derived in this paper,
though corresponding to a steady inviscid flow, describe three-dimensional velocity
fields which are regular and localized. Hence, they can be good models for the vortices
with axial and toroidal swirl, and provide bench-marks for validation of numerical
schemes under limiting conditions. Moreover, the obtained solutions form a complete
basis set in which complicated velocity fields can be expanded. Such expansions can
be potentially useful to simulate large-scale vortices with temporal variation and
viscous effects.

The paper is organized in the following way. In § 2, we present the general
solutions for the circulating flow with axial and toroidal swirls. In § 3, we identify the
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non-dimensional groups which define the vortical system and discuss a few specific
examples in terms of these parameters. If the solutions are superposed in a specific
manner, they can describe a steady velocity field with complicated patterns. Details of
this superposition technique and examples of complex flow structures are presented
in § 4. Finally, conclusions are drawn in § 5.

2. A general set of solutions for steady inviscid vortical flow
The mass and the momentum conservation equation for velocity fields with both

axial swirls and toroidal circulations can be simplified by considering incompressible
fluid and negligible viscous dissipation. The equations are expressed in cylindrical
coordinates (ρ, φ, z). The components of velocity v in the directions of the respective
coordinates are vρ, vφ, vz, all of which are, in general, non-zero. We assume that:

∂

∂φ
= 0 =⇒ ∂vρ

∂φ
=

∂vφ

∂φ
=

∂vz

∂φ
=

∂p

∂φ
=

∂V

∂φ
= 0, (2.1)

where p is the pressure field and V is an external potential.

2.1. The simplified governing equation for the system

Under these conditions, the fluid mechanical equations can be simplified into a single
variable equation which is known as the Squire–Long equation (Fraenkel 1956; Squire
1956; Long 1961). In order to do so, the solenoidal velocity field is expressed in terms
of two scalar streamfunctions ψ1 and ψ2:

v = ∇ψ1 × ∇ρ + ∇ψ2 × ∇φ = − 1

ρ

∂ψ2

∂z
êρ +

∂ψ1

∂z
êφ +

1

ρ

∂ψ2

∂ρ
êz. (2.2)

Then, replacing v in the momentum equation in terms of ψ1 and ψ2, it can be shown
that the conserved quantities such as total specific energy e and axial specific angular
momentum f are explicit functions of ψ2:

v · v/2 + p/d + V = e(ψ2), ρ2v · ∇φ = f (ψ2), (2.3)

where d is the fluid density. The explicit functions e(ψ2) and f (ψ2) can take any form
and each case corresponds to a different flow.

Hence, we can decouple e and ψ1 from ψ2 though all three variables are coupled in
the original momentum equation. As a result, it is possible to convert the multivariable
flow problem into a single scalar equation. This scalar equation is known as the
Squire–Long equation (Squire 1956; Long 1961):

∇ ·
(

1

ρ2
∇ψ2

)
+

f (ψ2)f
′(ψ2)

ρ2
− e′(ψ2) = 0, (2.4)

which along with (2.3) describes the dynamics of the circulating flow. The two explicit
functions e and f can be determined either by measurements or by modelling; but
whatever their functional forms may be, the obtained solution will always satisfy the
mass and the momentum conservation equations.

2.2. The linear model

The presented formulation can provide a solution for numerous types of vortical
fields. The solution depends on the functional form of e(ψ2) and f (ψ2) which can
vary from model to model for different flows. Among all possible cases, in this
paper, we analyse a specific case where the problem can be associated with a linear
homogeneous equation.
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For our systems, we consider the relations:

e = c + 1
2
β4ψ2

2 , (2.5)

f = λψ2. (2.6)

Here, β and λ are two constants whose inverses are two important length scales
related to the distribution of the energy and the angular momentum of the vortical
flow. The form of the two explicit functions in (2.5) and (2.6) differ from those adopted
in previous studies (Fraenkel 1956; Squire 1956; Long 1961). As a result of our model
selection, (2.4) can be converted into a linear homogeneous equation for ψ2

L̂(ψ2)

ρ2
= ∇ ·

(
1

ρ2
∇ψ2

)
= β4ψ2 − λ2

ρ2
ψ2, (2.7)

where the Stokes operator L̂ = ρ2∇ · (1/ρ2∇). In this paper, we focus on solving (2.7).

2.3. Separable solutions

Separable solutions for (2.7) are conceived to be of the following form:

ψ2 = g(z)H (β2ρ2) = g(z)H (η), (2.8)

where g and H are two functions, and η = β2ρ2. Then, considering that ψ2 is finite
for all z, we find

g′′(z) = −k2g(z) =⇒ g(z) = e±ikz. (2.9)

Accordingly, H satisfies

4H ′′ + 4ν
H

η
− H = 0, (2.10)

where

ν =
λ2 − k2

4β2
(2.11)

is a non-dimensional parameter.
For the flow to be physical, H has to be finite for all η and should decay to zero

when η → ∞. To this end, we consider the decaying asymptotic behaviour of (2.10):

4H ′′ − H = 0|η→∞ =⇒ H = e−η/2|η→∞ (2.12)

and define a new function which describes the departure from the asymptotic
behaviour

h = H eη/2 or H = h e−η/2. (2.13)

When (2.10) and (2.13) are combined, the equation for h(η) turns out to be related to
the Laguerre equations

h′′ − h′ + ν
h

η
= 0, (2.14)

so that the solution for h is an integral of the Laguerre polynomial of order ν − 1.
To distinguish between different solutions for different values of ν, we denote h in
the above equation as hν .

2.4. Quantization relation

In general, hν can be expressed as a polynomial series

hν =

ν∑
i=1

a
(ν)
i ηi, (2.15)
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where the coefficients satisfy the following recurrence relation:

a
(ν)
i+1 = − ν − i

i(i + 1)
a

(ν)
i . (2.16)

In order to obtain a physical solution, this polynomial must be truncated at some
finite term. In this respect, the mathematical formulation of the linear model for
vortical flows has a remarkable similarity with the formulation of the hydrogen
problem in quantum mechanics (Griffiths 1994). In both cases, the non-dimensional
parameter ν involved in the Laguerre equation has to be a positive integer:

ν = 1, 2, 3 · · · . (2.17)

Therefore, the values of λ, β and k are constrained by a quantization relation:

λ2 − k2 = 4nβ2, (2.18)

where, n is any positive integer. Therefore, if a circulating flow corresponds to the
proposed linear model, then the chosen proportionality constants in (2.5) and (2.6)
have to comply with (2.18) and cannot assume arbitrary values independently. This
constraint is similar to the relation for the quantized energy levels of a hydrogen
atom.

For different values of n, we obtain different polynomial functions represented as
hn. The corresponding flow is referred to as the flow of the nth radial mode. A few
of the polynomial functions for the first few values of n are given below:

h1 = η, h2 = η − η2

2
, h3 = 2η − 2η2 +

η3

3
, h4 = 6η − 9η2 + 3η3 − η4

4
. (2.19)

These expressions along with (2.2), (2.5), (2.6), (2.8), (2.9) and (2.13) completely
describe the velocity and the pressure field for the three-dimensional circulations.

3. Vortical flows between two parallel walls
We use the mathematical solutions derived in the previous section to describe

circulating velocity fields confined between two parallel impermeable walls. The walls
are represented by surfaces at z =0 and z = b, where b is the height of the channel.

In such geometry, the impermeability condition at the walls can be satisfied only if
ψ2 = 0 at these surfaces. Hence, ψ2 for the vortical flow-field of the nth-order radial
mode has the following form:

ψ2 = A sin(mπz/b)hn(η)e−η/2, (3.1)

where A is an amplitude and m can take any integer value. However, the solution
corresponding to m =1 is the most important and fundamental one since for all other
values of m, the solutions can be conceived as a repetition of the fundamental solution
with m =1 in a channel of height b/m. Hence, in our analysis, we only consider m =1
and

ψ2 = A sin(πz/b)hn(η)e−η/2. (3.2)

3.1. Energy and angular momentum of confined vortices

In (3.2), the amplitude A is an unknown parameter. According to our formulation,
the governing equation and the boundary conditions for ψ2 are homogeneous, and
as a result cannot provide the value of the amplitude. Moreover, for the description
of any physical flow, the proportionality constants β and λ defined in (2.5) and (2.6)
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Figure 1. Plots of (a) ε and (b) Ā as functions of β̄ for n= 1 (solid line), n= 2 (dashed line)
and n= 3 (dash-dotted line).

have to be evaluated. Therefore, we require three additional constraints to determine
A, β and λ. One of the three constraints is the quantization relation (2.18) which gives
a relation between β and λ. The remaining two required relations can be obtained
from simple physical arguments.

The total energy E and the total angular momentum Lz in the z-direction of
a confined non-dissipative vortex are two conserved quantities. These two known
conserved quantities give the two necessary inhomogeneous conditions for evaluation
of not only the amplitude, but also β and λ for a vortex of the nth-order radial mode.
To this end, we define a few non-dimensional quantities to describe properly the
relations among the relevant quantities. For example, β and λ are non-dimensionalized
with the help of channel width b

β̄ = bβ, λ̄ = bλ. (3.3)

Similarly, two other non-dimensional groups involving A, Lz and E are as below

Ā =
db2A

Lz

, (3.4)

ε =
L2

z

db5E
. (3.5)

The quantization relation can then be used to express λ̄ in terms of β̄:

λ̄ = ±
√

4nβ̄2 + π2. (3.6)

The other two required relations among β̄ , Ā and ε can be obtained in the form
Ā= Ā(β̄, n) and ε = ε(β̄, n) by evaluating the integrals of ψ2

2 and ψ2 in expressions
representing the energy and the angular momentum of the system given by (2.5) and
(2.6).

We calculate these integrals and present ε and Ā as functions of β̄ for different
values of n in figure 1. When β → 0 and β → ∞, the log–log plots reveal the limiting
values of ε and Ā (ε ∼ β̄−6, Ā ∼ β̄2 for β → 0 and ε ∼ β̄−4, Ā ∼ β̄ for β → ∞). These
plots can be used to assign proper values to the unknown parameters for the vortical
system. For given E and Lz, ε is known. Hence, from the ε–β̄ plot, we can determine
β̄ for a field with radial mode n. Then, the value of β̄ can be used in the Ā–β̄ plot to
find the corresponding dimensionless amplitude for the vortex.
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Figure 2. Projections of streamlines on the (ρ, z)-plane for a vortex with axial and toroidal
swirls trapped between two infinite parallel plates. This vortex corresponds to the radial mode
n= 1.

The dimensional analysis quantifies the proper scales for distance, time and velocity
associated with the vortex. As a result, we can predict the diffusion time scale td for
which this inviscid solution remains valid for a large but finite Reynolds number
Re. If Re is large but finite, the total head decreases with time owing to the viscous
dissipation and the solution varies slowly with time. The time scale of such slow
temporal variation is equal to td . This time scale depends on the value of β̄ . If
β̄ � 1, the time scale for vorticity diffusion is b2/ν. On the other hand, if β̄ � 1, then
td = 1/(νβ2).

3.2. Circulating flow between two infinite parallel plates

When the radial mode n is unity, the solution for the streamfunction described by
(3.2) corresponds to the vortex with axial and toroidal swirls in a space between two
infinite parallel plates. In order to analyse the detailed solution for such a velocity
field, we define the following dimensionless quantities:

z̄ = z/b, ρ̄ = βρ, (3.7)

v̄ρ =
vρb

βA
, v̄φ =

vφ

λβA
, v̄z =

vz

β2A
, (3.8)

p̄ =
2

dβ4A2
p. (3.9)

We present our results in terms of these dimensionless variables.
The projections of streamlines in the (ρ, z)-plane describe the structure of the

toroidal circulation. These projection lines are shown in figure 2 to elucidate the
direction of the velocity field in the ρ and z directions. The projected streamlines are
closed loops to ensure mass conservation in a bounded domain. The figure indicates
that at ρ̄ =1.414 the velocity is entirely in the angular direction and that point acts
as a stagnation point for the circulation in the (ρ, z)-plane.

Figure 3 specifies the components of the velocity vector in the φ and z directions.
The variations in vφ and vz are proportional to sin(πz̄) for fixed ρ̄. The amplitudes of
these two sinusoidal quantities are presented in figure 3 as functions of ρ̄. The plots
show that at the axis of symmetry, the velocity in the angular direction goes to zero
whereas vz is maximum at the same position. Then vφ reaches a maximum value as
ρ̄ increases and eventually decays to zero for ρ̄ → ∞. On the contrary, vz decreases
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Figure 3. Non-dimensional components of the velocity field with radial mode n= 1 are
presented as functions of non-dimensional radial distance. The curves correspond to the flow
at the midsection of the channel (z̄ = 1/2).

gradually to zero and then to negative values to ensure mass conservation for the
flow trapped by two impermeable walls.

Figure 4 presents the dimensionless pressure as a function of ρ̄ and z̄ for different
values of β̄ . The velocity is less near the wall and as a result the pressure is more
for z = 0. Similarly, higher values of β̄ cause the velocity head to be weaker than the
pressure head which is evident from the figures. These observations are consistent
with Bernoulli’s principle where an increase in velocity causes a decrease in pressure.

3.3. Vortex confined by cylindrical surfaces and planar walls

The higher-order radial modes (such as n= 2, 3, . . .) in (3.2) correspond to flow fields
which are bounded by horizontal planar surfaces and vertical cylindrical boundaries.
Depending on the value of n and the region of interest, this axially bounded domain
may be either inside or outside an impermeable cylinder or inside an annular space.

The radial functions hn(ρ̄) in (2.19) vanish for n − 1 distinct non-zero values of
ρ̄. Hence, for such values of ρ̄, ψ2 is zero and the corresponding cylindrical surface
represents an impermeable vertical boundary. Thus, for the nth-order radial mode,
the flow field is divided into n subdomains in which disconnected circulations are
contained.

We present projections of the streamlines in the (ρ, z)-plane for n=2 and n= 3 in
figure 5 to illustrate the toroidal circulations. The plots indicate the segmented flow
domains. For n= 2, a single impermeable cylinder divides the flow in two subdomains
at ρ̄ = 1.26. These subdomains are denoted as inside and outside of the cylinder in
the figure. For n= 3, there are two such cylindrical surfaces at ρ̄ = 1.14 and ρ̄ =2.17.
Hence, there are three subdomains: the first one is inside the first cylinder, whereas
the second is the annular region in between the two cylinders and the third is outside
the second cylinder. In all cases, for ρ̄ → ∞ the velocity fields exponentially decay to
zero.

3.4. Stability analysis

The physical behaviour of the vortical systems corresponding to the derived solutions
depends on the stability of the described fields. Hence, we present a stability analysis
of these flows by using Arnol’d’s well-known stability theorem (Arnol’d 1966a, b).
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Figure 4. Non-dimensional pressure for the vortical flows with n= 1 vs. the non-dimensional
radial distance for different heights in the z-direction (z̄ = 0 solid line, z̄ = 1/4 dashed line,
z̄ = 1/2 dash-dotted line). β̄ = 0.25 (a) β̄ =1.0, (b) β̄ = 4.0 (c).

According to Arnol’d’s theorem, a solution of Euler’s equation will be stable if
the integral representing the second-order variation δ2E in kinetic energy is positive
definite or negetive definite (Davidson 1994). We consider a kinetically admissible,
infinitesimally small, solenoidal and axisymmetric displacement field δη applied to
the fluid elements, so that the circulation on a small area element remains unchanged
by the displacement. Then, it can be shown that the second-order variation in kinetic
energy is

δ2E =
1

2

∫
V
[δv · δv + δη · (δω × v)] dV. (3.10)
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Figure 5. Projections of streamlines on the (ρ, z)-plane for vortices with axial and toroidal
circulations confined between two horizontal parallel plates and impermeable vertical
cylindrical surfaces. (a) corresponds to the radial mode n= 2 where the flows inside and
outside of one impermeable cylindrical surface are indicated. For (b) (n= 3), an additional
annular region exists which is confined between two vertical cylindrical surfaces.

Here, δv and δω are the first-order variations in velocity v and vorticity ω

δv = δη × ω + ∇δs, δω = ∇ × (δη × ω). (3.11)

The scalar field ∇δs is such that δv is divergence free.
The positive or negetive definiteness of δ2E for any arbitrary δη is the sufficient

condition to ensure stability. If this condition cannot be satisfied, the flow field
will be potentially, but not necessarily, unstable. To check Arnol’d’s condition, we
first replace all the related quantities in terms of ψ2. Then, applying the standard
procedures (Mestel 1989; Davidson 1994) to our problem, we find a lower and upper
bound for δ2E:

1

2

∫
V

δη · T− · δη dV � δ2E �
1

2

∫
V

δη · T+ · δη dV (3.12)

where T− and T+ are two second-order symmetric tensors

T− =

(
λ2

ρ2
− β4

)
∇ψ2∇ψ2 + ∇ψ ∇ L̂(ψ2)

ρ2
+ ∇ L̂(ψ2)

ρ2
∇ψ, T+ =

(
β4 − λ2

ρ2

)2

ρ2ψ2I + T−.

(3.13)
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Therefore, if it can be shown that either T− is positive definite or T+ is negetive
definite, the flow fields can be considered to be stable under external perturbations.

It is well known that the flow with axial and toroidal swirl does not satisfy
Arnol’d’s condition globally (Moffatt 1990; Davidson 1994). This indicates that in
general these systems are potentially unstable. This is true for the radial order n=1
and n= 2 where the stability cannot be assured. It seems that the three-dimensional
velocity fields inside or outside an axially confined cylinder are potentially unstable.
However, the flows with n>2 have several intermediate segmented subdomains which
are confined in annular regions and disconnected from each other by impermeable
cylindrical walls. Velocity fields in such regions seem to be stable for large values of
β̄ . The physical explanation of such behaviour is simple. Because of the centrifugal
instability, circulating flows with axial swirl are generally unstable in the region
where the angular momentum decreases with radius (Rayleigh 1916). Hence, if β̄ is
sufficiently high that ε (a measure of angular momentum) is sufficiently low (figure 1),
the resulting centrifugal instability can be effectively suppressed by two confining
vertical cylinders. We numerically check the eigenvalues of T+ and T− to quantify
this effect. We find that the middle region for n= 3 is stable for β̄ > 6.7. Similarly,
for n= 4, the second and the third subdomains with increasing radial distances are
stable for β̄ > 7.4 and β̄ > 8.1, respectively. However, a general stability condition for
these flows with arbitrary order is yet to be determined. Also, in real flow phenomena,
the presence of small viscous dissipation can affect the stability. We believe that the
viscous effect will tend to stabilize the system more and we will analyse this in the
near future.

4. Superposed flow fields with axial and toroidal circulations
The proposed linear model provides a complete set of basis solutions for swirling

flows. These basis functions can be used to expand complicated velocity fields with
frequent spatial fluctuations. Such expansions can be useful in the study of turbulent
vortices.

If we superpose the proper solutions corresponding to different radial modes (n)
and axial wavenumbers (m) in a specific manner, we can construct complicated but
steady vortical structures. The velocity fields in such vortices, though steady, mimic
an instantaneous flow field in a real turbulent phenomenon with frequent spatial
fluctuations. In this section, we describe the particular superposition procedure and
present a couple of cases where this procedure is applied.

4.1. Superposition of flows with different radial modes

We consider a linear combination of the solutions given by (3.1)

ψ2 =

M∑
m=1

Am sin(mπz̄)h̃n(η)e−η/2, (4.1)

or of the solutions with a phase difference in the sinusoidal dependence along z̄,

ψ2 =

M∑
m=0

Am cos(mπz̄)h̃n(η)e−η/2. (4.2)
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Here, M > 1 is an integer and Am is the spectral amplitude which is in general
dependent on m. The polynomial h̃n is a renormalized function so that

h̃n =
hn

n!
. (4.3)

The order of the radial mode n is a function of m, and denoted as nm here in after.
According to (2.18), for given values of λ̄ and β̄ , the integer numbers nm and m in

(3.1) should satisfy the following relation

λ̄2 = 4nmβ̄2 + m2π2. (4.4)

We are interested in those values of λ̄ and β̄ for which it is possible to find an integer
number for nm corresponding to each possible integer value of m in the interval
[−M, M] so that (4.4) is satisfied. Then it can be proved that

λ̄ =

√
pλ

q
π, β̄ =

√
pβ

l q

π

2
, (4.5)

where pλ, pβ , q and l are all integers. The calculations can be simplified if an
additional constraint in the form of pβ = 1 is assumed. This helps us to find simple
expressions for nm and M in terms of m, pλ, q and l

nm = l(pλ − m2q) M = Int(
√

pλ/q), (4.6)

where Int denotes the largest integer which is smaller than the argument. These
expressions give all the necessary relations that are required to properly superpose
solutions for a particular λ̄ and β̄ .

4.2. Flow fields with different spectral distributions

We use (4.6) to describe two different fields. For both cases, we assign the values of
the integer parameters as below

pλ = 30, q = 1, l = 1. (4.7)

Hence, we find M = 5 and nm = 30, 29, 26, 21, 14, 5 for m =0, 1, 2, 3, 4, 5 from (4.6).
The first of the two cases is referred as the Gaussian spectral distribution where

the spectral amplitude Am is described by a Gaussian distribution

Am = exp[−m2π2σ̄ 2], (4.8)

where σ̄ is a dimensionless parameter. Then this expression for the amplitude is used
in (4.2) to evaluate the flow-related quantities. The second case corresponds to (4.1)
with a Maxwellian distribution of the spectral amplitude

Am = mπ exp[−m2π2σ̄ 2]. (4.9)

The parameter σ̄ is considered to be 0.25 for both cases.
The flow fields corresponding to (4.8) and (4.9) represent two different physical

situations. For (4.9), the vortical system is similar to those described in § 3, where
the flow domain is axially bounded by two parallel walls. In such a case, vorticity is
generated by a vorticity generator which in a real-life condition should compensate
for any small loss due to boundary-layer dissipation at the confining surfaces. In
contrast, the Gaussian spectrum in (4.8) is associated with an open system where the
flow field is periodic in the axial direction. Physically, this is equivalant to a flow with
widely separated entry and exit so that vorticity enters through the entrance plane,
leaves the domain at the exit and creates repeating vortical structures in between. If
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Figure 6. Projections of velocity fields in the (ρ, z)-plane for vortices with axial and toroidal
circulations. (a) Gaussian and (b) Maxwellian spectra.

there is a small dissipation in the system, it is manifested by a small decay in the total
head along the axial direction.

For the Gaussian spectral distribution, the tangential velocity in the ρ-direction
vanishes at z̄ = 0 and z̄ = 1.0, whereas the flow in the second case satisfies the no-
penetration condition at the same planes. The projections of streamlines in the
(ρ, z)-plane illustrate these facts in figure 6. In both cases, the velocity field shows
complex structures of small-scale circulations. For the Gaussian spectra, these vortical
patterns are more elongated in the z-direction and are wavy because in this case flow
can penetrate the boundary and thus has more freedom in the vertical direction.
In contrast, for the Maxwellian spectra, the structures are more compact to ensure
mass conservation between the impermeable boundaries. We choose a window from
ρ = 1.0 to ρ = 4.0 in order to show the structural complexity in detail. However, in any
region of the flow domain, we can see such complex circulations unless the window
of observation is far away from the axis of symmetry where the fluid mechanical
quantities decay to zero.

In figure 7, we present the dimensionless velocity component (v̄φ) in the angular
direction and the dimensionless pressure p̄ as functions of ρ̄ for different z̄. Both fields
are highly fluctuating for either of the spectral distributions. The pressure field has
a more frequent fluctuation compared to vφ because the difference in pressure scales
as the difference in the square of the velocity. Hence, the pressure should fluctuate
roughly twice as much as vφ . For Maxwellian spectra, vφ is zero at z̄ =0 and z̄ = 1.0
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Figure 7. (a) Velocity in the φ direction and (b) pressure are presented as functions of ρ̄ for
different z̄ (z̄ = 0 solid, z̄ = 0.25 long-dashed, z̄ = 0.5 dash-dotted, z̄ = 0.75 short-dashed, z̄ = 1.0
dotted). (i) Gaussian spectra and (ii) Maxwellian spectra.

along with vz. Near the axis of symmetry, both flows have a large suction pressure to
sustain the circulations.

5. Conclusion
We propose a linear model to analyse various types of three-dimensional flows

with axial swirl and toroidal circulation. Our formulation enables us to represent the
vortical systems by a linear homogeneous partial differential equation with only one
dependent variable. This equation is similar to the equation involved in the hydrogen
problem in quantum mechanics, and gives regular and localized solutions. Owing to
the nature of the governing equation, a quantization relation, (2.18), can be derived
between the strengths of specific energy and specific angular momentum in the axial
direction.

We use our model to address several fluid mechanical problems. First, we focus on
vortical circulations with axial and toroidal swirls trapped in the regions bounded by
planar and cylindrical surfaces. We consider flow fields between two infinite parallel
impermeable walls, as well as vortices bounded by an axially confined cylinder or
annulus. Each of these geometries corresponds to a basis solution of the governing
scalar equation. The results agree qualitatively with three-dimensional circulations in
vortex simulators and exponentially decaying far fields produced by rotary machines
such as fans or propellers.

In the aforementioned real systems, vorticity is generated in an inner region (near
the injector or rotor, depending on the problem). The inviscid solution is not valid



Exact analytical solutions for vortical flows 161

there. However, if the Reynolds number is sufficiently high, the inviscid assumption is
valid far away from the core. This far field has both axial and toroidal swirls where the
vorticity is convected from the inner region. In reality, there are also boundary layers
at the confining surfaces. The viscous loss in such boundary layers is compensated by
the vorticity generator. This energy-balance consideration must be taken into account
in order to apply our solutions effectively in the analysis of vortical systems.

If the derived solutions are superposed in a proper manner, they can form steady
but complicated structures. We apply this superposition procedure to construct two
different velocity fields. Streamlines of these constructed flows show a convoluted
pattern. We also notice frequent spatial fluctuations in both pressure and velocity
which resemble instantaneous fields involved in turbulent processes.

The presented solutions form a complete set of basis functions corresponding to
axial and toroidal circulations. Hence, any complicated flow can be expanded in
terms of these fields. Such expansions can be used to simulate large-scale systems
with temporal fluctuations. However, the applicability of the method can be increased
considerably, if the effect of near-wall viscous dissipation can be incorporated into
the solutions.

The viscous dissipation at a solid surface can be studied by using the boundary-
layer theory. In the boundary-layer formulation, the derived fields can be treated as
the outer solutions far away from the wall. Then the far field can be used to find the
matching boundary condition for the inner viscous solution near the solid surface.
This will enable us to extend the present analysis to high-Reynolds-number swirling
flows where the viscous effect is only important near a wall and can be neglected
everywhere else.
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Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645–658.

Bazzant, M. Z. & Moffat, H. K. 2005 Exact solutions of the Navier–Stokes equations having
steady vortex structure. J. Fluid Mech. 541, 55–64.

Bragg, S. L. & Hawthorne, W. R. 1950 Some exact solutions of the flow through annular cascade
actuator disks. J. Aero. Sci. 17, 243–249.

Buntine, J. D. & Saffman, P. G. 1995 Inviscid swirling flow and vortex breakdown. Proc. R. Soc.
Lond. 449, 139–153.

Burggraf, O. R. & Foster, M. R. 1977 Continuation or breakdown in tornado-like vortices.
J. Fluid Mech. 80, 685–704.

Church, C. R., Snow, J. T., Baker, G. L. & Agee, E. M. 1979 Characteristics of tornado-like
vortices as a function of swirl ratio: a laboratory investigation. J. Atmos. Sci. 36, 1755–1776.

Davidson, P. A. 1994 Global stability of two-dimensional and axisymmetric Euler flows. J. Fluid
Mech. 276, 273–305.

Delbende, I., Chomaz, J. M. & Huerre, P. 1998 Absolute/convective instability in the Batchelor
vortex: a numerical study of the linear impulse response. J. Fluid Mech. 355, 229–254.

Emanuel, K. A. 1991 The theory of hurricanes. Annu. Rev. Fluid Mech. 23, 177–196.

Escudier, M. 1984 Observations of the flow produced in a cylindrical container by a rotating
endwall. Exps. Fluids 2, 189–196.

Escudier, M. 1987 Confined vortices in flow machinery. Annu. Rev. Fluid Mech. 19, 27–52.

Fernandez-Feria, R., de la Mora, J. F. & Barrero, A. 1995 Solution breakdown in a family of
self-similar nearly inviscid axisymmetric vortices. J. Fluid Mech. 305, 77–91.



162 S. Bhattacharya

Fraenkel, L. E. 1956 On the flow of rotating field past bodies in a pipe. Proc. R. Soc. Lond. 233,
506–526.

Fukada, R., Nigim, H. & Koyama, H. 1996 Measurements and visualization in the flowfield behind
a model propeller. J. Aircraft 33, 407–413.

Gelfgat, A. Y., Bar Yoseph, P. Z. & Solan, A. 1996 Stability of confined swirling flow with and
without vortex breakdown. J. Fluid Mech. 311, 1–36.

Goldshtik, M. A. & Shtern, V. N. 1990 Collapse in conical viscous flows. J. Fluid Mech. 218,
483–508.

Gollub, J. P. & Swinney, H. L. 1975 Onset of turbulency in a rotating fluid. Phys. Rev. Lett. 35,
927–930.

Griffiths, D. J. 1994 Introduction to Quantum Mechanics . Prentice-Hall.

Hill, M. J. M. 1894 On a spherical vortex. Phil. Trans. R. Soc. A 185, 213–245.

Keller, J. J. 1994 Entrainment effects in vortex flows. Phys. Fluids 6, 3028–3934.

Lamb, H. 1945 Hydrodynamics . Dover.

Le Dizès, S. & Lacaze, L. 2005 An asymptotic description of vortex Kelvin modes. J. Fluid Mech.
542, 69–96.

Lepicovsky, J. & Bell, W. A. 1984 Aerodynamic measurements about a rotating propeller with a
laser velocitymeter. J. Aircraft 21, 264–271.

Long, R. R. 1961 A vortex in an infinite viscous fluid. J. Fluid Mech. 11, 611–623.

Lopez, J. M. 1998 Characteristics of endwall and sidewall boundary layers in a rotating cylinder
with a differentially rotating endwall. J. Fluid Mech. 359, 49–79.

Malik, M. & Chang, C. L. 1994 Crossflow disturbances in three-dimensional boundary layers:
nonlinear development, wave interaction, and secondary instability. J. Fluid Mech. 268, 1–36.

Mestel, A. J. 1989 On the stability of high-Reynolds-number flows with closed streamlines. J. Fluid
Mech. 200, 19–38.

Mitsua, Y. & Monji, N. 1984 Development of a laboratory simulator for small-scale atmospheric
vortices. Nat. Disaster Sci. 6, 43–54.

Moffatt, H. K. 1981 Some developments in the theory of turbulence. J. Fluid Mech. 106, 27–47.

Moffatt, H. K. 1990 Structure and stability of solutions of the Euler equations: a Lagrangian
approach. Phil. Trans. R. Soc. Lond. A 333, 321–342.

Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148–154.

Saffman, P. G. 1992 Vortex Dynamics . Cambridge University. Press.

Shtern, V. N. & Hussain, F. 1999 Collapse, symmetry breaking and hysteresis in swirling flows.
Annu. Rev. Fluid Mech. 31, 537–566.

Sozou, C., Wilkinson, L. L & Shtern, V. N. 1994 On conical swirling flows in an infinite fluid.
J. Fluid Mech. 276, 261–271.

Squire, H. B. 1956 Surveys in Mechanics: Rotating Fluid . Cambridge University. Press.

Wang, C. Y. 1991 Exact solutions of the steady-state Navier–Stokes equation. Annu. Rev. Fluid
Mech. 23, 159–177.

Ward, N. B. 1972 The explanation of certain features of tornado dynamics using a laboratory
model. J. Atmos. Sci. 29, 1194.


